首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1682篇
  免费   126篇
  国内免费   51篇
  2023年   20篇
  2022年   43篇
  2021年   61篇
  2020年   61篇
  2019年   56篇
  2018年   46篇
  2017年   43篇
  2016年   55篇
  2015年   38篇
  2014年   92篇
  2013年   137篇
  2012年   82篇
  2011年   96篇
  2010年   80篇
  2009年   83篇
  2008年   83篇
  2007年   96篇
  2006年   72篇
  2005年   69篇
  2004年   59篇
  2003年   43篇
  2002年   46篇
  2001年   39篇
  2000年   31篇
  1999年   18篇
  1998年   19篇
  1997年   25篇
  1996年   22篇
  1995年   22篇
  1994年   29篇
  1993年   11篇
  1992年   13篇
  1991年   15篇
  1990年   7篇
  1989年   14篇
  1988年   18篇
  1987年   4篇
  1986年   5篇
  1985年   12篇
  1984年   11篇
  1983年   10篇
  1982年   9篇
  1981年   12篇
  1980年   13篇
  1979年   5篇
  1978年   5篇
  1976年   8篇
  1973年   5篇
  1971年   5篇
  1970年   3篇
排序方式: 共有1859条查询结果,搜索用时 234 毫秒
71.
Telocytes (TC), a cell population located in the connective tissue of many organs of humans and laboratory mammals, are characterized by a small cell body and extremely long and thin processes. Different TC subpopulations share unique ultrastructural features, but express different markers. In the gastrointestinal (GI) tract, cells with features of TC were seen to be CD34‐positive/c‐kit‐negative and several roles have been proposed for them. Other interstitial cell types with regulatory roles described in the gut are the c‐kit‐positive/CD34‐negative/platelet‐derived growth factor receptor α (PDGFRα)‐negative interstitial cells of Cajal (ICC) and the PDGFRα‐positive/c‐kit‐negative fibroblast‐like cells (FLC). As TC display the same features and locations of the PDGFRα‐positive cells, we investigated whether TC and PDGFRα‐positive cells could be the same cell type. PDGFRα/CD34, PDGFRα/c‐kit and CD34/c‐kit double immunolabelling was performed in full‐thickness specimens from human oesophagus, stomach and small and large intestines. All TC in the mucosa, submucosa and muscle coat were PDGFRα/CD34‐positive. TC formed a three‐dimensional network in the submucosa and in the interstitium between muscle layers, and an almost continuous layer at the submucosal borders of muscularis mucosae and circular muscle layer. Moreover, TC encircled muscle bundles, nerve structures, blood vessels, funds of gastric glands and intestinal crypts. Some TC were located within the muscle bundles, displaying the same location of ICC and running intermingled with them. ICC were c‐kit‐positive and CD34/PDGFRα‐negative. In conclusion, in the human GI tract the TC are PDGFRα‐positive and, therefore, might correspond to the FLC. We also hypothesize that in human gut, there are different TC subpopulations probably playing region‐specific roles.  相似文献   
72.
Regulation of the Bone Morphogenetic Protein (BMP) signaling pathway is essential for the normal development of vertebrate gastrointestinal (GI) tract, but also for the differentiation of the digestive mesenchymal layer into smooth muscles and submucosal layer. Different studies demonstrated that Bapx1 (for bagpipe homeobox homolog 1) negatively regulates the BMP pathway, but its precise expression pattern during the development and the differentiation of the GI tract mesenchyme actually remains to be examined. Here, we present the spatio-temporal expression profile of Bapx1 in the chick GI tract. We show that Bapx1 is first expressed in the undifferentiated mesenchyme of the gizzard and the colon. After the differentiation of the digestive mesenchyme, we found Bapx1 strongly expressed in the gizzard smooth muscle and in the submucosa layer of the colon. This expression pattern provides new insights into the roles of Bapx1 during the regionalization of the GI tract and the differentiation of the digestive mesenchyme of the colon and the stomach.  相似文献   
73.
74.
The influence of low dietary levels of free and encapsulated medium-chain fatty acids on their concentrations in the digesta, the gastric microbial ecology and bacterial metabolic products in the gastrointestinal tract (GIT) in weaned piglets was studied. Starting after weaning, 36 piglets were fed a diet without (Control) or with medium-chain fatty acids uncoated (MCFA) or coated with vegetable fat and lecithin (MCFAc). After 4 weeks, the animals were killed, and digesta from the stomach and different sections of the GIT were collected. The concentrations of caprylic (p < 0.001) and capric (p = 0.001) acids were higher in the stomachs of piglets fed diets MCFA and MCFAc compared to the Control group. The concentrations dropped rapidly along the GIT, regardless of encapsulation, and tended to be higher in groups MCFA and MCFAc compared to the Control. Compared to the Control group, ingestion of diet MCFAc led to an increase in the number of eubacteria (p = 0.001), enterobacteriaceae (p < 0.001), clostridial clusters I (p = 0.001) and IV (p = 0.019), Lactobacillus johnsonii (p < 0.001) and Lactobacillus amylovorus (p = 0.001) in gastric contents. A similar trend was seen with diet MCFA. Relative concentrations of short-chain fatty acids were characterised by lower propionic acid levels (p = 0.045), numerically (p < 0.1) higher acetic, lower n-butyric and i-valeric acid concentrations in the small intestine. Lactic acid concentrations were not significantly changed in the GIT, but ammonia concentrations increased (p < 0.001) in the distal small intestine in the MCFA and MCFAc groups. In conclusion, medium-chain fatty acids affected microbial ecology parameters in the gastric contents and bacterial metabolites in the small intestine. At low dietary levels, medium-chain fatty acids may be regarded as modulators of the gastric microbiota in weaned piglets.  相似文献   
75.
76.
Abstract

The suprachiasmatic nuclei (SCN) contain the endogenous mammalian circadian pacemaker, which generates the circadian rhythm in locomotor activity. In Syrian hamsters with free‐running rhythms, the onset of running‐wheel activity is very precise and predictable while the end (offset) is more variable. From the thalamic intergeniculate leaflet (IGL) and the ventral lateral geniculate nucleus (vLGN) a projection to the SCN originates. Animals with a lesion aimed at the IGL/vLGN and sham‐and unoperated controls were kept in continuous darkness. With linear regression, lines were fitted through 10 successive onsets and offsets of activity and the mean deviation of the onsets and offsets from the fitted lines was determined. Animals with a complete or partial lesion of the IGL/vLGN had a smaller mean deviation of the circadian activity offset from the fitted regression line (0.313 h) compared with the grouped control animals (0.678 h). To test the difference statistically, we compared the sum of the square residuals of the circadian offsets between the groups. This difference was highly significant (F(69,64)=4.16, p<0.0001), which indicates that animals with a lesion of the IGL/ vLGN have a less variable circadian offset of running‐wheel activity. No differences were observed in the variability in the circadian onset of locomotor activity between experimental and control animals. It is concluded that the IGL/vLGN influence the variability of the offset of the circadian running‐wheel activity.  相似文献   
77.
Changes occurring after feeding in the digestive enzyme activities of European eel were investigated to provide some insights into the digestive physiology of this fish. Total and specific proteases, amylase and lipase activities were measured using standard biochemical assays over a 24 h cycle in fed eels, compared to starved ones, under the same rearing conditions. In the gastrointestinal tract of fed eels quantitative changes started 4 h after feeding and continued later on; conversely, in starved eels enzyme activities remained unchanged over time. In fed eels, total and specific protease activities showed an overall increasing trend in the intestine, while in the stomach they progressively decreased to values 22–50% lower than those measured at the pre-feeding time; this behaviour probably reflected the progression of digesta along the intestinal tract. The prolonged secretory response of European eel to food ingestion proved its extended activity in the digestive process.  相似文献   
78.
Transport of calcium (Ca) and cadmium (Cd) was examined along the gastro-intestinal tract (GIT) of freshwater and seawater Oncorhynchus mykiss irideus (FWT and SWTies respectively) using in vitro and in vivo experiments. Based on known physiological differences between FWT and SWT which aid in regulating ion levels and osmolarity, we hypothesized that SWT would have lower rates of Ca uptake. Also, we predicted that Cd rates would also be lower because Cd is known to share a common transport mechanism with Ca. Kinetics of Ca and Cd transport were determined using mucosal salines of varying concentrations [1, 10, 30, 60, and 100 (mmol L− 1 for Ca, μmol L− 1 for Cd)]. Linear and saturating relationships were found for Ca for FWT and SWT, but overall SWT had lower rates. Linear and/or saturating relationships were also found for Cd uptake, but rates varied little between fish types. Elevated Ca had no inhibitory effect on Cd transport, and Ca channel blockers nifedipine and verapamil had little effect on Ca or Cd uptake. However, lanthanum reduced Ca transport into some compartments. A 21 day in vivo feeding experiment was also performed where FWT and SWT were exposed to control diets or Cd-spiked diets (552 μg Cd g− 1 food). Whole body Cd uptake between fish types was similar, but the majority of Cd in SWT remained in the posterior intestine tissue, while FWT transported more Cd through their gut wall. Overall it appears that large differences in Ca and Cd uptake between FWT and SWT exist, with SWT generally having lower rates.  相似文献   
79.
TRPC4 and TRPC5 channels are important regulators of electrical excitability in both gastrointestinal myocytes and neurons. Much is known regarding the assembly and function of these channels including TRPC1 as a homotetramer or a heteromultimer and the roles that their interacting proteins play in controlling these events. Further, they are one of the best-studied targets of G protein-coupled receptors and growth factors in general and Gαq protein coupled receptor or epidermal growth factor in particular. However, our understanding of the roles of Gαi/o proteins on TRPC4/5 channels is still rudimentary. We discuss potential roles for Gαi/o proteins in channel activation in addition to their known role in cellular signaling.  相似文献   
80.
The enteric nervous system is a vast network of neurons and glia running the length of the gastrointestinal tract that functionally controls gastrointestinal motility. A procedure for the isolation and culture of a mixed population of neurons and glia from the myenteric plexus is described. The primary cultures can be maintained for over 7 days, with connections developing among the neurons and glia. The longitudinal muscle strip with the attached myenteric plexus is stripped from the underlying circular muscle of the mouse ileum or colon and subjected to enzymatic digestion. In sterile conditions, the isolated neuronal and glia population are preserved within the pellet following centrifugation and plated on coverslips. Within 24-48 hr, neurite outgrowth occurs and neurons can be identified by pan-neuronal markers. After two days in culture, isolated neurons fire action potentials as observed by patch clamp studies. Furthermore, enteric glia can also be identified by GFAP staining. A network of neurons and glia in close apposition forms within 5 - 7 days. Enteric neurons can be individually and directly studied using methods such as immunohistochemistry, electrophysiology, calcium imaging, and single-cell PCR. Furthermore, this procedure can be performed in genetically modified animals. This methodology is simple to perform and inexpensive. Overall, this protocol exposes the components of the enteric nervous system in an easily manipulated manner so that we may better discover the functionality of the ENS in normal and disease states.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号